Dynamic Network Traffic Flow Prediction Model based on Modified Quantum-Behaved Particle Swarm Optimization

نویسندگان

  • Hongying Jin
  • Linhao Li
چکیده

This paper aims at effectively predicting the dynamic network traffic flow based on quantum-behaved particle swarm optimization algorithm. Firstly, the dynamic network traffic flow prediction problem is analyzed through formal description. Secondly, the structure of the network traffic flow prediction model is given. In this structure, Users can used a computer to start the traffic flow prediction process, and data collecting module can collect and return the data through the destination device. Thirdly, the dynamic network traffic flow prediction model is implemented based on BP Neural Network. Particularly, in this paper, the BP Neural Network is trained by a modified quantum-behaved particle swarm optimization(QPSO). We modified the QPSO by utilizing chaos signals to implement typical logistic mapping and pursuing the fitness function of a particle by a set of optimal parameters. Afterwards, based on the above process, dynamic network traffic flow prediction model is illustrated. Finally, a series of experiments are conduct to make performance evaluation, and related analyses for experimental results are also given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization

Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...

متن کامل

Prediction for Short-term Traffic Flow Based on Optimized Wavelet Neural Network Model

Short term traffic forecasting has been a very important consideration in many areas of transportation research for more than 3 decades. Short-term traffic forecasting based on data driven methods is one of the most dynamic and developing research arenas with enormous published literature. In order to improve forecasting model accuracy of wavelet neural network, an adaptive particle swarm optim...

متن کامل

A Network Traffic Prediction Model Based on Quantum Inspired Pso and Wavelet Neural Network

Network traffic flow prediction model is fundamental to the network performance evaluation and the design of network control scheme which is crucial for the success of high-speed networks. Aiming at shortcoming of the conventional network traffic time series prediction model and the problem that BP training algorithms easily plunge into local solution, a network traffic prediction model based o...

متن کامل

Research on OD Matrix Calculation Based on Quantum Behaved Particle Swarm Optimization Algorithm

Traffic information is so far less than the number of OD variables, that it is difficult to obtain the satisfactory solution. In this paper, a method based on Quantum behaved Particle Swarm Optimization (QPSO) algorithm is developed to obtain the global optimal solution. It designs the method based on QPSO algorithm to solve the OD matrix prediction model, lists the detailed steps and points ou...

متن کامل

OPTIMUM SHAPE DESIGN OF DOUBLE-LAYER GRIDS BY QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION AND NEURAL NETWORKS

In this paper, a methodology is presented for optimum shape design of double-layer grids subject to gravity and earthquake loadings. The design variables are the number of divisions in two directions, the height between two layers and the cross-sectional areas of the structural elements. The objective function is the weight of the structure and the design constraints are some limitations on str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JNW

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013